首页 > 留学知识库

问题: 高一数学问题

集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},a∈P,b∈Q,则有( )

A.a+b∈R
B.a+b∈Q

需要分析。

解答:

集合P={x|x=2k,k∈Z}={偶数},
集合Q={x|x=2k+1,k∈Z}={奇数},
集合R={x|x=4k+1,k∈Z}={被4除余1的整数},
a∈P,b∈Q,则有(B )
B.a+b∈Q


说明:a为偶数,b为奇数,a+b必为奇数,并非全是被4除余1的整数
例如a=4,b=3,a+b=7为奇数,不是被4除余1的整数