问题: .......
设等比数列{an}的前几项和为Sn,Wn=1/a1+1/a2+...
+1/an,如果a8=10.则S15:W15=
请详解,谢谢~
解答:
设等比数列{an}首项a1,公比为q,则通项an=a1q^(n-1)
1/a1,1/a2,... ,1/an,是首项1/a1,公比1/q的等比数列
通项1/an=(1/a1)*[1/q^(n-1)]
S15=a1(1-q^15)/(1-q),W15==(1/a1)*[1-1/q^15]
S15:W15={a1(1-q^15)/(1-q)}:{(1/a1)*[(1-1/q^15)]/[1-(1/q)]}
={a1(1-q^15)/(1-q)}×{(a1)*1/[[1-(1/q)]/(1-1/q^15)]}
={a1(1-q^15)/(1-q)}×{(a1)*1/[[(q-1)/q)]/(1-1/q^15)]}
=-(a1)^2(1-q^15)/q[1-1/q^15]
=-(a1)^2(1-q^15)/[q(q^15)-1]/q^15]
=(a1)^2×q^14
=(a1q^7)^2
=(a8)^2
=10^2
=100
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。